Central adenosine receptor signaling is necessary for daily torpor in mice.

نویسندگان

  • Benjamin W Iliff
  • Steven J Swoap
چکیده

When calorically restricted at cool ambient temperatures, mice conserve energy by entering torpor, during which metabolic rate (MR), body temperature (T(b)), heart rate (HR), and locomotor activity (LMA) decrease. Treatment with exogenous adenosine produces a similar hypometabolic state. In this study, we conducted a series of experiments using the nonspecific adenosine receptor antagonists aminophylline and 8-sulfophenyltheophylline (8-SPT) to test the hypothesis that adenosine signaling is necessary for torpor in fasted mice. In the first experiment, mice were subcutaneously infused with aminophylline while T(b), HR, and LMA were continuously monitored using implanted radiotelemeters. During a 23-h fast, saline-treated mice were torpid for 518 ± 43 min, whereas aminophylline-treated mice were torpid for significantly less time (54 ± 20 min). In a second experiment, aminophylline was infused subcutaneously into torpid mice to test the role of adenosine in the maintenance of torpor. Aminophylline reversed the hypometabolism, hypothermia, bradycardia, and hypoactivity of torpor, whereas saline did not. In the third and fourth experiments, the polar adenosine antagonist 8-SPT, which does not cross the blood-brain barrier, was infused either subcutaneously or intracerebroventricularly to test the hypothesis that both peripheral and central adenosine receptor signaling are necessary for the maintenance of torpor. Intracerebroventricular, but not subcutaneous, infusion of 8-SPT causes a return to euthermia. These findings support the hypothesis that adenosine is necessary for torpor in mice and further suggest that whereas peripheral adenosine signaling is not necessary for the maintenance of torpor, antagonism of central adenosine is sufficient to disrupt torpor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Integrative and Translational Physiology: Integrative Aspects of Energy Homeostasis and Metabolic Diseases Central adenosine receptor signaling is necessary for daily torpor in mice

Iliff BW, Swoap SJ. Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Physiol Regul Integr Comp Physiol 303: R477–R484, 2012. First published July 11, 2012; doi:10.1152/ajpregu.00081.2012.—When calorically restricted at cool ambient temperatures, mice conserve energy by entering torpor, during which metabolic rate (MR), body temperature (Tb), heart rate (HR), and ...

متن کامل

Pyruvate induces torpor in obese mice.

Mice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate. The drop in body temperature cor...

متن کامل

AMP does not induce torpor.

Torpor, a state characterized by a well-orchestrated reduction of metabolic rate and body temperature (T(b)), is employed for energetic savings by organisms throughout the animal kingdom. The nucleotide AMP has recently been purported to be a primary regulator of torpor in mice, as circulating AMP is elevated in the fasted state, and administration of AMP causes severe hypothermia. However, we ...

متن کامل

Combination Therapy with A1 Receptor Agonist and Vitamin C Improved Working Memory in a Mouse Model of Global Ischemia-Reperfusion

Introduction: Stroke is one of the most important reasons of death. Hence, trials to prevent or lessen the complications originated by stroke are a goal of public health worldwide. The ischemia-reperfusion causes hypoxia, hypoglycemia and incomplete repel of metabolic waste products and leads to accumulation of free radicals triggering neuronal death. The A1 adenosine receptoras an endogenous l...

متن کامل

Norepinephrine Controls Both Torpor Initiation and Emergence via Distinct Mechanisms in the Mouse

Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 303 5  شماره 

صفحات  -

تاریخ انتشار 2012